Improvement of microscopic screening of pulmonary tuberculosis in low-income countries

Pr Yves Buisson
IFMT, Vientiane, RDP Lao

> 1/3 cases in the South-East Asia Region

DOTS strategy (1995)
Directly Observed Treatment Short course

5 key components:
- Government commitment to sustained TB control activities
- Case detection by sputum smear microscopy among symptomatic patients self-reporting to health services
- Standardized treatment regimen of 6-8 months
- A regular, uninterrupted supply of all essential anti-TB drugs
- A standardized recording and reporting system

Sputum smear microscopy
- Ziehl-Neelsen staining
- The most cost-effective method of pulmonary TB screening
- Rapid, specific, inexpensive
- Can detect AFB > 10^4/ml sputum = highly infectious TB cases
- But low sensitivity < 50%

Factors limiting the case detection of pulmonary TB in Lao PDR

- Sensitivity of sputum smear microscopy: 47% in 2007
- Constraint of international criteria for positivity: ≥ 2 sputum samples/3 AFB+
- Distance to laboratory screening
- Quality problems: materials, techniques, technicians. Culture of mycobacteria not performed
- Prevalence of HIV co-infection (3.3% of incident TB cases): decrease the sensitivity of smear microscopy < 20%
How to improve detection of pulmonary TB by 2015 in low income countries?

- Increase the number of samples:
 - 3 consecutive sputum: sensitivity 2-5%
 - 2 sputum on the same day: workload performances

- Increase the contrast:
 - Fluorescence examination: sensitivity 10%
 - Limits: costs and stability of reagents

- Increase the concentration of AFB in sputum:
 - Liquefaction (sodium hypochlorite) + centrifugation

The bleach method

1. Add a solution of NaOCl 5% to the sputum (vol / vol) in the vial
2. Mix thoroughly and incubate for 15 min at room temperature
3. Transfer 2 to 15 ml in a conical tube with distilled water (vol / vol)
4. Centrifuge at 2000 rpm for 15 min
5. Put a drop of the pellet on a slide dry, fix and stain with Ziehl Neelsen

First study in Lao PDR, 2008
(612 patients – 1675 sputum samples)

INT J TUBERC LUNG DIS 13(9):1124–1129
© 2009 The Union
The bleach method improves the detection of pulmonary tuberculosis in Laos
S. Ongkhammy,* V. Amstutz,† H. Barennes,* Y. Buisson*
* Institut de la Francophonie pour la Médecine tropicale, Vientiane,† Service Fraternel d’Entraide, Hôpital d’Attapeu, Attapeu, Lao Peoples’ Democratic Republic

Design of the study

- 3 months: central lab
 - Mahosot hospital
 - 560 patients
 - 1552 samples

- 1 month: peripheral lab
 - Attapeu hospital
 - 52 patients
 - 123 samples

Double blind reading

2 independent microscopists
20 mlfrottis (200 champs)

Matching of results

Agreement

Discrepancy

Validation

3rd reading

Contradictory

Semi-quantitative scale of the IUATLD

<table>
<thead>
<tr>
<th>Number of AFB</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>No AFB* on at least 100 HPF**</td>
<td>0</td>
</tr>
<tr>
<td>1-9 AFB / 100 HPF</td>
<td>±</td>
</tr>
<tr>
<td>10-89 AFB / 100 HPF</td>
<td>+</td>
</tr>
<tr>
<td>>10 AFB / HPF on at least 50 HPF</td>
<td>++</td>
</tr>
<tr>
<td>>10 AFB / HPF on at least 20 HPF</td>
<td>+++</td>
</tr>
</tbody>
</table>

* AFB: acid-fast bacilli
** HPF: high-power microscopic field

First study in Lao PDR, 2008
(612 patients – 1675 sputum samples)
Qualitative results

<table>
<thead>
<tr>
<th>Smear microscopy</th>
<th>Direct method</th>
<th>Bleach method</th>
</tr>
</thead>
<tbody>
<tr>
<td>negative</td>
<td>1469 (87.7)</td>
<td>1400 (83.6)</td>
</tr>
<tr>
<td>positive</td>
<td>206 (12.3)</td>
<td>275 (16.4)</td>
</tr>
<tr>
<td>Total</td>
<td>1675 (100)</td>
<td>1675 (100)</td>
</tr>
</tbody>
</table>

p = 0.0007

Quantitative results (according to the semi-quantitative scale of UICTMR)

- 1-9/100
- 10-99/100
- 1-10/0
- >10/1

9 serial samples from a HIV+ patient

Second study in Lao PDR, 2009

Application de la méthode de fluidification-centrifugation à l’eau de Javel au dépistage de la tuberculose pulmonaire chez les patients infectés par le VIH en RDP LAO

Provisional results (60 patients – 121 samples)

<table>
<thead>
<tr>
<th>Culture</th>
<th>Smear microscopy</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Direct method</td>
<td>Bleach method</td>
</tr>
<tr>
<td></td>
<td>neg</td>
<td>pos</td>
</tr>
<tr>
<td>negative</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>positive</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td>107</td>
<td>14</td>
</tr>
</tbody>
</table>
Cost-effectiveness analysis

<table>
<thead>
<tr>
<th>Effectiveness</th>
<th>direct method</th>
<th>bleach method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - suspect patients</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>2 - patients AFB+</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>Costs (US$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 - unit (one patient)</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>4 - total (60 patients)</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>5 – cost-effectiveness (4/2)</td>
<td>8.6</td>
<td>8.2</td>
</tr>
<tr>
<td>6 – marginal cost-effectiveness (4/4 of 2)</td>
<td>7.5</td>
<td></td>
</tr>
</tbody>
</table>

Bleach method: advantages

- inexpensive, available everywhere
- easy to implement in peripheral and poorly equipped laboratory
- does not require special technical skills
- better sensitivity and negative predictive values, than direct method
- improves the yield of case detection, especially for paucibacillary samples
- reduces the number of samples to examine
- reduces the risk of laboratory contamination

Bleach method: disadvantages

- Lack of standardization:
 - what concentration of the solution of NaOCl? 2 to 5%
 - how long the incubation period? 15 min ± ?
 - how long and what speed centrifugation? 15 min, 2000 rpm ± ?
- Additional costs and delays:
 - centrifuge and disposable (conical centrifuge tubes)
 - preparation 30 min before staining
- samples must be doubled if culture:
 (sputum treated with the bleach can not be then cultured)
- Technician Training & Quality Assurance

Conclusion

The bleach method can improve the case finding of pulmonary TB in low income countries, especially
- when culture is not yet available
- when HIV co-infection is prevalent

Applied in all laboratories involved in the NTP, it might effectively strengthen the DOTS strategy provided that training and quality control are ensured

Somvay ONGKHAMMY
Chaysavanh THAMMAVONG
Hubert BARENNES
Yves BUISSON
Vincent AMSTUTZ
Phimpha PABORIBOUNE
Bertrand BOUCHARD