ÉVALUATION DU RISQUE ATHÉROGÈNE CHEZ LE DRÉPANOCYTAIRE HOMOZYGOTE :
Étude des taux plasmatiques des lipides et apolipoprotéines AI et B

Measurement of apolipoproteins AI, B and atherogenic risk in homozygous sickle cell disease.

Summary: The main clinical use of measurements of Apo AI and Apo B is to determine a patient’s risk status for the development of ischemic heart disease. Apo B is generally accepted as a contributory cause of coronary artery disease, while Apo AI apparently has a protective effect. The present study reports the plasma change of Apo AI and B in sickle cell anaemic subjects. Immunochromatographic findings revealed that Apo AI and B levels were found to be lower in sickle cell patients as compared with normal subjects (HbAA). The atherogenicity index given by Apo B/Apo AI remained in the normal range during periods of steady state (0.64 ± 0.28), while subjects in painful crisis had high index values (0.95 ± 0.35). Therefore, we concluded that epidemiological studies on a large sample of patients are needed to confirm this relationship between painful crisis and risk of developing coronary artery disease.

Résumé : La drépanocyteose est une hémoglobinopathie qui se caractérise sur le plan biochimique par une réaction inflammatoire et une lipoxydation faisant suite à la falciformation du globule rouge avec des conséquences multiples. Dans cette étude, le risque athérogène chez le drépanocytaire homozygote a été apprécié à travers le dosage des apolipoprotéines AI et B. Les résultats obtenus ont montré une diminution simultanée des apolipoprotéines AI et B chez le drépanocytaire. Toutefois, pendant la crise vasculo-occlusive, la baisse de l’apolipoprotéine AI est beaucoup plus prononcée. Cela s’est traduit par une augmentation de l’index athérogenicité (apolipoprotéines B/apolipoprotéine AI) du drépanocytaire en crise (0.95 ± 0.35) par rapport à la phase stationnaire (0.64 ± 0.28) et au témoin (0.74 ± 0.29). Dans le groupe de patients en crise, une élévation du rapport cholestérol total/HDL-cholestérol (5.04 ± 0.50 vs 4.13 ± 0.68) a été également notée. Compte tenu des valeurs élevées de l’index athérogenicité, nous avons conclu à l’existence d’un risque athérogène chez le drépanocytaire en crise. Toutefois, l’échantillon étant de faible taille, d’autres études sont indispensables pour confirmer ce mauvais profil de risque pour les maladies cardio-vasculaires.

INTRODUCTION

L’anémie drépanocytaire (drépanocyteose maladie ou sicklenémie) est un désordre génétique occasionné par l’héritage homozygote de l’hémoglobine S (HbS). En Côte d’Ivoire, elle constitue un véritable problème de santé publique puisque, dans certaines régions, la prévalence est de l’ordre de 15 % (6).

Parmi les différents aspects de la physiopathologie, la production de radicaux libres puis la lipoxydation sont les événements majeurs contribuant à la réduction de la demi-vie des hématies (13, 14, 20, 24). Par ailleurs, dans la drépanocyteose homozygote, plusieurs études ont montré une perturbation du métabolisme des lipides et apolipoprotéines séricques (4, 11, 12, 23). Récemment, Dioumessa et al., (10), dans une étude sur des Camerounais porteurs du trait drépanocytaire, ont montré une diminution de l’apolipoprotéine A1 (Apo A1) contre une élévation de l’Apo B. Toutefois, des études concernant la drépano-
cytose homozygote et la concentration plasmatique des apolipoprotéines sont inexistantes.

Cette présente investigation a été entreprise dans le but d’évaluer, à travers le dosage des apolipoprotéines AI et B sériques, le risque athérogène chez le drépanocytaire homozygote ivoirien.

PATIENTS ET MÉTHODES

Patients

Cent quarze drépanocytes homozygotes ont fait l’objet de cette étude. Il s’agit de 101 malades en phase stationnaire et 13 en crise vasculo-occlusive et non en crise hémolytique. Ces patients sont connus et suivis régulièrement dans le service d’hématologie clinicu du CHU de Yopougon (Abidjan, Côte d’Ivoire). Les malades en phase stationnaire sont constitués de sujets recevant régulièrement un traitement préventif antipaludéen (chloroquine : 100 mg/j), n’ayant pas eu de crise ni de transfusion sanguine depuis au moins 6 mois, et venus pour leur consultation périodique.

Tab. 1. — Populations étudiées.

<table>
<thead>
<tr>
<th></th>
<th>total</th>
<th>sexe</th>
<th>limite d’âge (ans)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>M</td>
<td>F</td>
</tr>
<tr>
<td>drépanocytes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>en crise</td>
<td>13</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 - 29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(15)</td>
</tr>
<tr>
<td>en phase</td>
<td>101</td>
<td>51</td>
<td>50</td>
</tr>
<tr>
<td>stationnaire</td>
<td></td>
<td></td>
<td>2 - 22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(17)</td>
</tr>
<tr>
<td>témoins non</td>
<td>40</td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td>drépanocytes</td>
<td></td>
<td></td>
<td>5 - 29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(15)</td>
</tr>
</tbody>
</table>

Parallèlement, 40 sujets de même âge et sexe apparemment sains ont constitué le groupe témoin. Ceux-ci ont été retenus sur la base d’une hémotypologie et d’un hémogramme normaux. L’obésité, la grossesse, la prise de contraceptifs oraux ou d’autres médicaments susceptibles de perturber le métabolisme des lipoprotéines, l’hypertension, l’hypothyroïdie, l’alcool et le tabac ont constitué les critères d’exclusion dans les deux groupes (8, 9, 16).

Après le consentement oral, le sang est collecté dans des tubes contenant un anticoagulant (EDTA). Le plasma obtenu est ensuite fractionné en aliquotes de 0,5 ml puis congelé à – 30° C (pendant 7 jours maximum). La décongélation n’est effectuée que lors de la mise en œuvre des déterminations.

Méthodes

L’électrophorèse de l’hémoglobine à pH alcalin et à pH acide et l’hémogramme ont constitué les examens de choix pour la constitution de notre échantillon et notamment du groupe témoin.

Le cholestérol total, HDL-cholestérol et les triglycérides plasmatiques ont été déterminés par des techniques colorimétriques enzymatiques utilisant les réactifs commercialisés par le laboratoire Biomerieux (France). Le LDL-cholestérol a été calculé selon la formule de Friedewald.

Les Apo AI et B sont dosées par immunodiffusion radiale (7). La plaque de gel est préparée à partir d’une solution d’indubiose A37 (IBF, Gennevilliers, France) à 1 % dans le tampon barbitale (0,05 M, pH 8,6) contenant l’immunsérum anti-Apo AI ou B (gracieusement offert par le Professeur AKPONA Simon : UER biologie, faculté de médecine, Cotonou, Bénin) respectivement à 4 et 2 %. Après diffusion des échantillons dans les puits de dépôt pendant 48 heures, la plaque de gel séchée est colorée au bleu de Coomassie. La lecture est effectuée par rapport à des sérums standards et témoins (Behring : Marburg, Allemagne) ayant diffusé dans les mêmes conditions opératoires. La technique a permis d’obtenir des coefficients de variation inter- et intrasérial respectivement égaux à 4 et 3,5 %.

L’analyse des résultats a utilisé le test t de Student. La relation entre deux variables a été déterminée par l’analyse de la régression linéaire.

RÉSULTATS

Les concentrations plasmatiques moyennes de l’Apo AI et B ainsi que des lipides sont consignées dans le tableau II.

Il en ressort globalement, hormis les rapports Apo B/Apo AI et cholestérol total/HDL-cholestérol et les triglycérides, que tous les autres paramètres étudiés sont abaissés dans la drépanocytose ($p > 0,05$ à $p < 0,01$).

Ainsi, comparativement au groupe témoin, les valeurs plasmatiques du cholestérol total, de ses principales fractions et des Apo AI et Apo B sont simultanément diminuées chez le drépanocytaire en phase stationnaire. En conséquence, les indices athérogènes Apo B/Apo AI et cholestérol total/HDL-cholestérol restent inchangés au cours de la phase stationnaire.

Toutefois, dans la crise drépanocytaire, nous notons une augmentation des triglycérides, une hypochondérolémie, une diminution plus prononcée de l’Apo AI et du HDL-cholestérol, avec des valeurs de l’indice d’athérogénicité Apo B/Apo AI et cholestérol total/HDL-cholestérol plus élevées.

DISCUSSION

La maladie drépanocytaire est généralement associée à une hypochondérolémie (11, 12). A cet égard, les résultats obtenus au cours de ce travail sont conformes aux données de la littérature. En ce qui concerne les triglycérides, nos résultats ont montré une élévation de la triglycéridémie pendant la crise drépanocytaire tandis
Tab. II. — Valeurs plasmatiques des triglycérides, cholestérol, apolipoprotéines (g/l) et des indices d’athérogénicité dans la drépanocytose homozygote.

<table>
<thead>
<tr>
<th></th>
<th>cholestérol total</th>
<th>triglycérides</th>
<th>HDL-chol.</th>
<th>LDL-chol.</th>
<th>apoA1</th>
<th>apoB</th>
<th>cholestérol HDL-chol.</th>
<th>apoB</th>
<th>apoA1</th>
</tr>
</thead>
<tbody>
<tr>
<td>HbAA (n = 40)</td>
<td>1,57 ± 0,43</td>
<td>0,77 ± 0,27</td>
<td>0,38 ± 0,16</td>
<td>1,02 ± 0,32</td>
<td>1,20</td>
<td>0,89 ± 0,18</td>
<td>4,13 ± 0,29</td>
<td>0,74</td>
<td></td>
</tr>
<tr>
<td>HbSS phase stationnaire (n = 101)</td>
<td># 1,20 ± 0,27</td>
<td>0,78 ± 0,43</td>
<td># 0,28 ± 0,10</td>
<td># 0,77 ± 0,27</td>
<td># 1,01</td>
<td>0,65 ± 0,24</td>
<td>4,28 ± 0,28</td>
<td>0,64</td>
<td></td>
</tr>
<tr>
<td>HbSS en crise (n = 13)</td>
<td># 1,21 ± 0,31</td>
<td>* 1,02 ± 0,37</td>
<td># 0,24 ± 0,06</td>
<td># 0,86 ± 0,29</td>
<td># 0,78</td>
<td># 0,74 ± 0,28</td>
<td>^ 5,04 ± 0,35</td>
<td>^ 0,95</td>
<td></td>
</tr>
</tbody>
</table>

Valeurs moyennes ± écarts-types

valeurs plus faibles que celles des témoins ; * supérieures à celles des sujets en phase stationnaire ;

* plus faibles que celles des HbSS en phase stationnaire ;

^ supérieures à celles des HbSS en phase stationnaire et du groupe témoin (p < 0,01 à p < 0,05 : test t de Student)

que, dans la phase stationnaire, les valeurs sont restées dans les limites des valeurs normales (28). El-HAZMI et al. (11) ont par ailleurs noté une absence de variation de la triglycéridémie chez leurs drépanocytaires, contrairement aux travaux de ERASMUS et al. (12) qui rapportent une hypertriglycéridémie. Toutefois, ces auteurs n’ont pas précisé l’activité de la maladie.

La diminution de ces lipides, notamment le cholestérol, pourrait être attribuée, comme chez tous les états anémiques, à une augmentation du volume plasmatique consécutive à la réduction du volume du culot gloutulaire dans l’anémie drépanocytaire (3, 15). Par ailleurs, les lipides plasmatiques étant en équilibre permanent avec ceux des érythrocytes (23), l’hypocholestérolémie pourrait être la conséquence de son utilisation accrue pour la biosynthèse de la membrane érythrocytaire.

Notre étude a surtout montré la diminution des Apo AI et B dans la drépanocytose. Les raisons de cette diminution sont inconnues. Très peu d’études ont porté sur les variations des taux des apolipoprotéines au cours des hémoglobinopathies (10). Par ailleurs, il a été difficile de comparer nos travaux à ceux de DIOMESSI et al. (10) qui rapportent une diminution de l’Apo AI contre une augmentation de l’Apo B chez le porteur de trait drépanocytaire. Toutefois, comme DIOMESSI et al. (10), nous avons également noté une chute de l’Apo AI nettement significative pendant la crise. Cette Apo AI semble se comporter comme une protéine négative de l’inflammation (5), de manière analogue à certains marqueurs nutritionnels comme la transferrine dans la drépanocytose homozygote (17).

D’après les travaux de BENDITT et ERIKSEN (2) et de SAILLE et al. (22), au cours d’une réaction inflammatoire, l’apolipoprotéine du sérum amyloïde A déplace l'Apo AI de la fraction des lipoprotéines de densité lourde (HDL). Et cette libération de l'Apo AI dans la circulation accélérerait son métabolisme, expliquant ainsi sa forte diminution.

Parallèlement, la diminution des Apo AI et Apo B, constituants protéiques respectifs des HDL et LDL, est accompagnée d’une concentration plus basse du HDL-cholestérol et à un degré moindre du LDL-cholestérol. Les corrélations (Apo B/LDL-cholestérol : r = 0,667 et Apo AI/HDL-cholestérol : r = 0,418 ; p < 0,02) sont significatives. Par ailleurs, il est établi que l’Apo AI active les enzymes responsables du transfert du cholestérol des cellules et des lipoprotéines de basse densité aux HDL et des HDL au foie qui assure son métabolisme et son excrétion. Par conséquent, la concentration plasmatique de l’Apo AI peut être considérée comme un index de la capacité fonctionnelle des HDL à capter le cholestérol (7) et sa diminution, un facteur de risque athérogène. A l’inverse, l’importance de l’Apo B, donc des LDL, dans la genèse de l’athérosclérose est largement démontrée (19, 25). In vivo, le mécanisme nécessite la production de LDL modifiés (LDLm) par glycation, désialylation ou par oxydation. Ces modifications entraînent un défaut de reconnaissance par les récepteurs des LDL, alors que la captation par les macrophages s’avère accrue (18, 25). Ceux-ci se transforment ensuite en cellules spumueuses, stade précoce de l’athérosclérose (19). Compte tenu de l’importance de la lipoperoxidation dans la drépanocytose, on pourrait supposer cette modification des LDL par oxydation. Par conséquent, la diminution du LDL-cholestérol et de l’Apo B pourrait être attribuée, à côté de la voie classique d’épuration, à une épuration supplémentaire par les récepteurs « scavenger » des macrophages.

À l’heure actuelle, l’élévation du rapport cholestérol total/HDL-cholestérol est considérée comme le meilleur indicateur du risque athérogène (21). Chez le drépanocytære en crise, cet indice est apparu plus élevé (5,04 ± 0,5) de manière significative (p < 0,05), comparativement à celui des patients en phase stationnaire (4,28 ± 0,27) et du témoin (4,13 ± 0,68). Des résultats similaires (non présentés) ont été aussi obtenus avec les rapports LDL-cholestérol/HDL-cholestérol.

Par ailleurs, les taux de l’Apo AI et B ont été évoqués comme des indicateurs du risque d’infarctus du myocarde ou du degré d’athérosclérose coronarienne et cérébrale (1, 26, 27). Ainsi, cet autre indice défini par le rapport Apo B/Apo AI et qui fournit également des valeurs plus élevées (p < 0,05) chez le sujet en crise.
(0.95 ± 0.35) que celles du groupe témoin à hémoglobine normale (0.74 ± 0.25), conforte l’hypothèse d’un profil plus athérogène au cours de la crise drépanocytaire.

Au total, ces observations suggèrent que le drépanocytaire en crise semblerait être plus exposé au risque cardio-vasculaire. Cependant, le profil sensiblement normal observé en phase stationnaire avec une hypocholestérolémie relative chez le drépanocytaire, même en crise, atténue considérablement le risque athérogène.

Cet ensemble de résultats démontre l’intérêt d’un suivi médical régulier et efficace conduisant à réduire les crises. Enfin, une étude épidémiologique sur une population plus importante et tenant compte de la fréquence des crises chez le drépanocytaire (HbSS) est indispensable pour confirmer cette hypothèse.

BIBLIOGRAPHIE

13. HEBBEL (R. P.), EATON (J. W.), BALASINGHAM (M.) & STEINBER (M. H.). - Spontaneous oxygen radical gene-

27. WAYNE (T. F.), ALAPOVIC (P.), CURRY (M. D.), LU (G.), ANDERSON (P. S.) & SCHEIN (E.). - Plasma apolipopro-
